Aeronautical Studies / Safety Assessments in the context of SMS

– Theory and Practice –

Dr. Holger Schulz – CEO airsight GmbH
h.schulz@airsight.de
Safety Risk Management is one of the four pillars of SMS

ICAO State Letter (AN 12/51-07/74), 07.12.2007
Need of Safety Assessment

- The need of a Safety Assessment could arise from
 - Implementation of SMS
 - Identification of hazards
 - Audits, Inspections
 - Change of infrastructure (e.g. airport expansion)
 - Change of operation (e.g. implementation of A380)
 - Change of regulations (e.g. Annex 14)
 - Compliance checks
 - Certification of aerodromes

Safety Assessment is a commonly used method and widely accepted, e.g.

- Nuclear industry
- Aircraft Manufacturer (e.g. FAR 25/CS-25)
- ANSP (e.g. ESARRs für ATM)
- AACG (A380 Airport Compatibility Group)
- References in aerodrome related ICAO Docs
 - Annex 14
 - Doc 9774 (Manual on Certification of Aerodromes)
 - Doc 9859 (Safety Management Manual)
How to conduct a Safety Assessment

<table>
<thead>
<tr>
<th>Severity</th>
<th>Probability</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>minor</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>major</td>
<td>acceptable</td>
<td>unacceptable</td>
</tr>
<tr>
<td>hazardous</td>
<td>undesirable</td>
<td>undesirable</td>
</tr>
<tr>
<td>catastrophic</td>
<td>undesirable</td>
<td>unacceptable</td>
</tr>
</tbody>
</table>

- **„Just“ identify**
 - hazards
- **calculate**
 - probability
 - severity
- **compare to**
 - Target Level of Safety (TLS)

TLS:
Target Level of Safety
The „little“ problems of Safety Assessments

In general
- Risk quantification (how much risk is inherent)
- TLS (how much safety/risk is adequate)
- Method (how to do it)

For possible solutions one can
- conduct trials (sometimes you better don’t)
- use experts opinion (not always appropriate method)
- refer to historical data (e.g. accident data base)
- conduct simulations (mostly expensive)

Some Examples and Case Studies
- Runway End Safety Area (RESA) – risk quantification
- Taxiway Separation – TLS derivation and mitigation measures
- Airplanes and Ships – risk networks
- Runway Holding Positions – development of new models
- Pilots confusion/blinding – qualitative assessments

TLS:
Target Level of Safety
Risk Quantification:
How much safety is inherent to a RESA?

- Depending on the specific airports infrastructure and operations, e.g.
 - Operations (LDG, DEP)
 - Approach (PA, NPA)
 - Traffic Mix (jet, prop)
 - Weather conditions (dry, wet)

- Models from different Risk Assessments
 - Large accident/incident data base
 - Flight Simulator Trails

- Example for a risk quantification taking into account one airport’s individual situation

 OVERRUN RISK
 - Take Off 4.67E-07
 - LDG (PA) 4.62E-07
 - LDG (NPA) 3.06E-06

 UNDERSHOOT RISK
 - ILS 1.04E-09
 - LOC (PAPI on) 5.37E-06
 - VOR (PAPI on) 4.43E-05
 - VOR (PAPI off) 1.69E-03

RESA: Runway End Safety Area
PA: Precision Approach
NPA: Non Precision Approach
LDG: Landing
ILS: Instrument Landing System
LOC: Localizer Approach
PAPI: Precision Approach Path Indicator
Risk Quantification: How much safety is inherent to a RESA?

Models for RWY	Parameter	Source
Lateral excursion (DEP, PA, NPA) | Strip width | accident database
Overrun (DEP, PA, NPA) | RESA length | accident database
Undershoot (PA, NPA) | RESA length | flight simulator trials
RWY land-off (PA, NPA) | Strip length, RESA width | accident database, flight simulator trials

RESA: Runway End Safety Area
PA: Precision Approach
NPA: Non Precision Approach
LDG: Landing
ILS: Instrument Landing System
LOC: Localizer Approach
PAPI: Precision Approach Path Indicator
Taxiway Separation Study:
TLS Derivation – Risk Quantification – Mitigation Measures

Current situation at the region of interest

<table>
<thead>
<tr>
<th>Code Letter</th>
<th>TWY Centre Line to TWY Centre Line [m]</th>
<th>TWY Centre Line to Object [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>66.5</td>
<td>40.5</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>47.5</td>
</tr>
<tr>
<td>Current situation at the region of interest</td>
<td>76.13</td>
<td>40.26</td>
</tr>
</tbody>
</table>

Pier A

Pier B

TWY S

TWY R4

TWY Centre Line

Object

ICAO Annex 14

TLS: Target Level of Safety

TWY: Taxiway
Taxiway Separation Study: TLS Derivation

- Problems
 - Multiple hazards
 - from a FHA-Workshop with all Stakeholders
 - No TLS available
 - for ground operations in a local operational area

- Review of existing similar TLS (NTSB, ICAO, ECAC)
 - choice of most conservative TLS: ICAO A-SMGCS
 - 1×10^{-8} collision per movement on ground
 - conducting a time based fraction (for local operational area)
 - considering number of relevant movements
 - resulting in 8.6×10^{-6} collisions per year
Taxiway Separation Study: Risk Quantification
Taxiway Separation Study: Risk Quantification

Total Risk: 5.3×10^{-5}
TLS: 8.6×10^{-6}
Taxiway Separation Study: Quantification of Mitigation Measures

- limitation of aircraft size for one stand
- operational restriction or limit push back deviation
- displacement of holding positions K & M

Total Risk:
- TLS: 5.3×10^{-5}
- 8.6×10^{-6}
- 2.1×10^{-6}
- 1.1×10^{-6}
Assessment on temporary mobile objects: Risk Networks

- Approaching aircraft’s flight path is penetrated by large ships
 - Method?
 - Conduct trials?
 - Available data bases?
 - Risk calculation?

- Solution
 - Using experts’ opinions
 - and Bayesian networks
Bayesian Networks

- Frequencies: derived from statistics

- A/C on course to conflict area
 - 500 events per year

- Vessel (>21m) on course to conflict area
 - 2000 events per year

- A/C and vessel on conflict course
 - 7 events per year
Frequency and Probability in Bayesian Networks

Air Traffic Controllers: „this happened 5 times within the last 10 years“
with 500 approaches p.a. this yields 1 in 1000 approaches

Probabilities: derived from experience of domain experts

Controller notice possible conflict late
0.00369805005 events per year

0,00021484330005 events per year

99999:10000
Assessment on Runway Holding Positions: Model development

The problem
- aircraft penetrate obstacle limitation surfaces
- displacement of holding positions has negative impact on capacity
- ICAO collision risk model not valid below OCH

OCH: Obstacle Clearance Height
Assessment on Runway Holding Positions: Model development

Solution

- Development of
 - collision risk model for visual segment (PA and NPA)
 - based on ICAO Balked Landing Study (Circular 301)
- Application of model to calculate risks
Pilots confusion/blinding: Qualitative Safety Assessment

The problem

- Pilots might get blinded by lights from
 - Cars
 - Trains
- Pilots might misinterpret runway with
 - Road
Safety Assessment: Pilots confusion/blinding

Solution

- Visualization within a Flight Simulator
- Hazard Identification
- Definition of critical visual situations
 - night, offset approaches, crosswind, lights on road, NPA, ...
- Assessment of visual cues pilots receive

No TLS, no quantification of risk

- judgment purely based on opinion of experts and CAA

CAA:
Civil Aviation Authority

NPA:
Non Precision Approach
Conclusions

- Safety Risk Management is a crucial part of SMS
 - but maybe the most difficult

- There is always the same theoretical approach to Risk Assessment
 - But different methods in real life
 - from simple qualitative expert's opinion
 - to complex quantitative network assessment

- Safety Assessments have to be
 - Systematically
 - Serious and robust
 - well communicated (with CAA)

- Safety Assessments are sometimes very complex and expensive
 - But give the opportunity to cope with special situations
 (e.g. non-compliance)

- So rather see it as a chance than as a burden
Conclusions

- Safety Risk Management is a crucial part of SMS but maybe the most difficult.

- There is always the same theoretical approach to Risk Assessment, but different methods in real life:
 - from simple expert's opinion
 - to complex quantitative network assessment

- Safety Assessments have to be:
 - Systematic
 - Serious and robust
 - Well communicated (with CAA)

- Safety Assessments are sometimes very complex and expensive but give the opportunity to cope with special situations (e.g., non-compliance)

- So rather see it as a chance than as a burden

Thank you for your attention!